



# Access SRTM Terrain Data

Amita Mehta

1 December 2017

# **Objectives**

By the end of this exercise, you will be able to select, download, and analyze SRTM terrain data over the Sao Francisco Verdadeiro (SFV) watershed using the GDeX portal and QGIS.

#### Requirements

- QGIS installed on your computer
  - https://arset.gsfc.nasa.gov/sites/default/files/water/drought/Introduction %20to%20QGIS.pdf
- A shapefile for the Sao Francisco Verdadeiro watershed saved on your computer
  - http://arset.gsfc.nasa.gov/
- Uesr account for NASA Earthdata portal: <a href="http://earthdata.nasa.gov/">http://earthdata.nasa.gov/</a>

#### **Outline**

- Part 1: Access, Import, and Visualize SRTM Elevation Data Products
- Part 2: Import and Visualize SRTM Elevation Data in QGIS
- Part 3: Derive Slope from the SRTM Digital Elevation Model



Part 1: Access, Import, and Visualize SRTM Elevation Data Products

- Go to the GDEx portal: <a href="http://gdex.cr.usgs.gov/gdex/">http://gdex.cr.usgs.gov/gdex/</a>
- 2. From the top menu bar, click **Log**In
- 3. Login with your NASA Earthdata username and password
- 4. Click on the xy in the menu bar, and you will get a window to enter the desired latitude and longitude to select a rectangular region





#### 5. Enter

- North Latitude: –24.5
- South Latitude: -25.2
- West Longitude: -54.1
- East Longitude: -53.4
  - Note: this covers the SFV watershed
- 6. Click submit
- 7. You will see a box over the SFV watershed
- 8. Click on the **download** button in the menu bar. A window will pop up.



- Next to Product, select NASA SRTM V3.0, 1 arcsec from the drop-down list
- 10. Select GeoTIFF 1x1 Tiles
- 11. You will get a message window:
  Please Wait: Your request is being
  processed
  - Note: The number of tiles cannot exceed 36. If the domain is too large, then the data has to be downloaded in multiple steps





- 12. Once the data files are ready to be downloaded, you will get a window where you can select **Download**.
- 13. Save the data files on your computer. You will be able to name the data when you save the files.
- 14. You will see the data in a .zip file after you save them on your computer.
- 15. Double click to unzip the data.
- 16. You will get a folder with SRTM terrain tiles in TIFF format



#### **Discussion Question**

1. How may TIFF files do you see in the folder?



Part 2: Import and Visualize SRTM Elevation Data in QGIS

- 1. Open **QGIS** on your desktop
- 2. Add in a base map from **Web** using the **OpenLayers Plugin**
- 3. Choose the base map OpenStreetMap
- 4. Zoom in on the study area in southern Brazil
- 5. Go to the QGIS top bar and click on **Raster**
- 6. From the drop-down menu, go to **Miscellaneous** and select **Merge**
- 7. A window will open for you to navigate to the location of the downloaded SRTM product



- 8. Select **Choose input directory instead of files** since there are multiple SRTM tiles in the .tiff files (you can also choose to merge one tile at a time)
- 9. Click Select next to Input Directory
- 10. Select the folder with your SRTM TIFF files
- 11. You will see a list of all the files in the directory under **Load into canvas when finished**
- 12. Click **Select** next to **Output File.** This will open a new window where you can **Select where to save the** merge output.
- 13. Click **OK** at the bottom of the window





- 14. It may take a few seconds to a few minutes for the files to save it depends on the number of tiles being merged
- 15. Once the tiles have been merged, the new raster with the output file name you assigned will be imported on the QGIS window
- 16.On the left menu bar, click **Add Vector** to add the SFW shapefile: sfv\_4326.shp

- 17. Make the shapefile layer transparent with only the boundary outlined on the map
  - Right click on the layer file and go
     to Properties > Style
  - Click on the down arrow in the Fill window and select Transparent fill
  - Click on the down arrow in the Outline window and choose a color of the shapefile boundary (The example uses black)
  - Choose outline width to be 2.0



You will get the merged terrain raster layer and the shape file on outline in the QGIS window

- 18. Now clip the merged SRTM terrain raster to the SFV shape file
  - On the top bar go to Raster > Extraction >
     Clipper to open the Clipper options window
  - In the Input File (raster) window select: SRTM-Merged.tif.
  - In the Output file window select output folder and enter file name (Suggestion: SRTM-Merged\_Clipped)
  - Check the Mask Layer and in the Mask Layer window select the shapefile named sfv\_4326
  - Click **OK** on at the bottom right







- 19. You should see the data clipped by the shapefile boundary (Figure 5) Right click on the clipped raster layers one at a time and follow the steps to get colored Terrain maps:
  - Go to Properties > Style
  - Select the Render Type as Singleband Pseudocolor
  - Next to Color, make sure the color palette is Yellow-Orange-Brown by selecting (YIOrBr)
  - Below the color display, change the
     Mode to Equal Interval and Classes to 20.
     Click Classify, then click Apply.
  - Click OK to close the Change Color box



- 20. Make the clipped layer transparent to see the map underneath and to mask 0 terrain values
  - Right click on the layer file and go toProperties > Transparency
  - Set the Transparency level to 50%
  - Under No data value enter 0 in
     Additional no data value
- 21. Click **Apply** and then **OK**
- 22. Zoom on the terrain layer and view the details



#### **Discussion Questions**

1. Which region has higher elevation over the SFV? (East, West) Note the maximum elevation values with units

2. Which region has a more uniform elevation? (East, West)



Part 3: Derive Slope from the SRTM Digital Elevation Model

Using the SRTM elevation now in QGIS, we can create a slope product using the DEM (Terrain Models) Tool

- In the top menu, select: Raster > Analysis > DEM (Terrain Models)
- In the dialog that appears, ensure the Input file is the SRT-Mearged\_Clipped file we just visualized



- 3. Set the Output file to a folder and name ending in .tiff (Suggestion: slope.tiff)
- 4. Set the **Mode** option to **Slope**
- 5. Do not check the Slope expressed as percent box
  - the slope will be in degree
- 6. In the scale (ratio of vert. units to horiz) box, enter
  - 111120.00 to convert the units to meters
- 7. Click **OK**
- The resulting image displays the slope in degrees







- 8. Change the color of the slope by right clicking on the **Slope** layer, selecting **Properties** as done before for the clipped terrain layer
- 9. Set Min and Max values to 0 and 7 respectively
- 10. Choose color to RdYIBI (Red-Yello-Blue) and check **Invert** so that blue color red color shows higher slope than blue
- 11.Set Mode as Equal Interval
- 12. In classes, enter **7** intervals
- 13. Click on Apply



- 14. From the left side menu select **Transparency** and choose the appropriate percent (30%) value of transparency to see the OpenStreet Map under the precipitation layer
- 15. Click on **OK**
- 16. You will get the slope map
- 17. The high slopes are red, and the low slopes are blue
- 18. Generally, low slope terrain surrounded by higher slope terrain has an increased potential for waterlogging



#### **Questions**

 Can you identify channels wish low slope where flow accumulation may occur?

2. Looking at the slope values would you consider this watershed as highly variable terrain area?